Excel Functions Tutorials

- Excel Formulas Cheatsheet
- Excel
- Financial Functions in Excel
- Logical Functions in Excel
- TEXT Functions in Excel
- Lookup Reference in Excel
- Address Function in Excel
- Choose Function in Excel
- Column Function in Excel
- Columns Function in Excel
- REPLACE Function in Excel
- GetPivotData in Excel
- HLOOKUP in Excel
- Hyperlink Excel Function
- INDIRECT Function in Excel
- LOOKUP Excel Function
- Match Excel Function
- VLOOKUP Excel Function
- INDEX Excel Function
- VLOOKUP vs HLOOKUP

- Maths Functions in Excel
- POWER Function in Excel
- EVEN Function in Excel
- ODD Function in Excel
- ABS Function in Excel
- SUM Function in Excel
- SUMPRODUCT Function in Excel
- SUBTOTAL Excel Function
- ROUND in Excel
- AGGREGATE Excel Function
- PRODUCT Excel Function
- RAND Excel Function
- LOG Excel Function
- EXPONENTIAL Excel Function
- SUMIF in Excel
- TAN Excel Function
- CEILING Excel Function
- LN Excel Function
- SIGN Excel Function
- COS Excel Function
- FLOOR Function in Excel
- SIN Excel Function

- Date and Time Function in Excel
- Statistical Function in Excel

**TAN Function in Excel (Table of Contents)**

## TAN Excel Function

TAN Excel Function is an inbuilt function categorized as Math/Trig function which returns the Tangent of an angle. Formula for TAN always returns a numeric value.

In trigonometry, a Tangent of an angle is equivalent to the ratio of the perpendicular to the base of a right-angled triangle.

TAN Θ = opposite side/ adjacent side

Therefore, TAN Θ = a/b

### TAN Formula in Excel

Below is the formula for TAN in Excel.

Where number is an argument passed to the function in radians.

The angle that we specify as an input is recognizable by the Tangent function only when specified as Radians.

To convert an angle into radians either use the RADIANS function or convert the angle into radians by a mathematical relation

**Radian = angle degree * (π/180)**

π in Excel is represented by a function PI()

Therefore, **radian = degree *(PI()/180)**

Calculating TAN Value using TAN and RADIANS Function

Calculating TAN Value using TAN and PI Function

Tangent function has many real-life applications; it is widely used in architectures to calculate the heights and lengths of geometric figures. A Tangent function used in navigation systems and GPS, aeronautics.

For example, if an airplane is flying at a height of 3000m and it makes an angle to an observer on the ground of 26° and we want to find the distance of the plane from the observer.

As we know that TAN Θ = opposite side/ adjacent side

Here the opposite side = altitude of the plane from the ground which is equal to 3000 meters

And the adjacent side = horizontal distance of the plane from the ground which is unknown and we need to calculate it.

So using the formula for TAN we have

TAN(26°) = 3000/x

Therefore, x = 3000/(TAN(26°))

In excel taking the relative reference values we have,

X **=B2/(TAN(B3*(PI()/180)))**

X= **6150.91 meters**

**How to Use TAN in Excel?**

Excel TAN function is very simple and easy to use. Let understand the working of formula for TAN in excel by some examples.

### Tangent in Excel Example #1

A man with a height of 6 feet is 55 meter away from a tree. He makes an angle of 47° for the vision parallel to the ground. We want to calculate the height of the tree.

In order to find the height of the tree, we will use the TAN Θ, in context to Excel we will be using the Tangent function.

The height of the tree will be

The height of Man + Distance of Man from tree * TAN(47°)

Since the height of the man is in feet so we will convert it into meters (1foot = 0.30 meters)

Putting all the relative values in Excel the formula for Height of tree will be

**=(0.3*B2)+(B3*TAN((B4*(PI()/180))))**

**TAN Excel Output:**

The height of the tree is **60.78 meters.**

### Tangent in Excel Example #2

Suppose we have five right-angled triangles, given with their angles and length on one side and we need to calculate the length of the other two sides.

The sum of all the angles on a triangle is equal to 180°, therefore, we can easily calculate the third angle.

We know, Sin Θ = opposite/hypotenuse

So, opposite side length will be **Sin Θ * hypotenuse**

In Excel, the length of the Opposite side (perpendicular side), will be calculated by the TAN formula

**=E2*SIN(C2*(PI()/180))**

Applying the TAN formula for five triangles we can get the length of perpendiculars of the triangles

Now, we have two sides of the triangle, the hypotenuse and the perpendicular side we can easily calculate the third side (base) using the TAN in Excel.

We know, TAN Θ = opposite side/Adjacent side

So, adjacent side length will be **Opposite Side**/**TAN Θ**

In Excel, the length of the adjacent side (base), will be calculated by the TAN formula

**=F2/(TAN(RADIANS(C2)))**

Applying the TAN formula for five triangles we can get the length of the adjacent side of the triangle

**TAN in Excel Output:**

### Tangent in Excel Example #3

An aircraft takes a turn of radius 160 m and flies with a constant bank angle of 87°, in ideal conditions (no wind fluctuations) calculate the constant groundspeed of the aircraft.

The radius of the turn is given by the formula

Radius of turn = V^{2}/ g * TAN Θ

The radius of turn is 160 meter; Constant bank angle is 87°, g is the acceleration of gravity whose value is 9.8 m/s^{2}, so the ground speed will be

V = (Radius of turn * (g * TAN Θ))^{1/2}

Applying the above TAN formula in Excel with the reference values we have the TAN formula

**=SQRT(B2*(9.8*(TAN(RADIANS(B3)))))**

SQRT is an Excel inbuilt function that computes the square root of a number.

**TAN in Excel Output:**

So, the ground speed of the aircraft is 172.97 m/s

### Tangent Function Example #4

We have a formula for TAN denoted by *f(x) *= 2c*TAN2Θ, where the c is a constant value equal to 0.988. The variant value is the value of Θ and formula for TAN depends on the value of Θ. We need to plot the graph of the given Tangent function.

Using the Excel TAN function we will then calculate the values of the function, so taking the reference values as input we have the TAN formula,

**=2*0.988*(TAN(RADIANS(2*B3)))**

Applying the TAN formula to other cells we have,

**TAN in Excel Output:**

**Tangent Function Graph:**

You can download this TAN Function in Excel template here – TAN Function Excel Template

### Recommended Articles

This has been a guide to TAN Excel Function. Here we discuss the TAN Formula in excel and how to use TAN function along with excel example and downloadable excel templates. You may also look at these useful functions in excel –

## Leave a Reply