Financial Modeling Tutorials

- Financial Modeling Basics
- Excel Modeling
- Financial Functions in Excel
- Sensitivity Analysis in Excel
- Sensitivity Analysis
- Capital Budgeting Techniques
- Time Value of Money
- Future Value Formula
- Present Value Factor
- Perpetuity Formula
- Present Value vs Future Value
- Annuity vs Pension
- Present Value of an Annuity
- Doubling Time Formula
- Annuity Formula
- Annuity vs Perpetuity
- Annuity vs Lump Sum
- Deferred Annuity Formula
- Internal Rate of Return (IRR)
- IRR Examples (Internal Rate of Return)
- NPV vs XNPV
- NPV vs IRR
- NPV Formula
- NPV Profile
- NPV Examples
- PV vs NPV
- IRR vs ROI
- Break Even Point
- Payback Period & Discounted Payback Period
- Payback period Formula
- Discounted Payback Period Formula
- Profitability Index
- Cash Burn Rate
- Simple Interest
- Simple Interest vs Compound Interest
- Simple Interest Formula
- CAGR Formula (Compounded Annual Growth Rate)
- Effective Interest Rate
- Loan Amortization Schedule
- Mortgage Formula
- Loan Principal Amount
- Interest Rate Formula
- Rate of Return Formula
- Effective Annual Rate
- Effective Annual Rate Formula (EAR)
- Daily Compound Interest
- Monthly Compound Interest Formula
- Discount Rate vs Interest Rate
- Rule of 72
- Geometric Mean Return
- Real Rate of Return Formula
- Continuous compounding Formula
- Weighted average Formula
- Average Formula
- Average Rate of Return Formula
- Mean Formula
- Mean Examples
- Population Mean Formula
- Weighted Mean Formula
- Harmonic Mean Formula
- Median Formula in Statistics
- Range Formula
- Outlier Formula
- Decile Formula
- Midrange Formula
- Quartile Deviation
- Expected Value Formula
- Exponential Growth Formula
- Margin of Error Formula
- Decrease Percentage Formula
- Percent Error Formula
- Holding Period Return Formula
- Cost Benefit Analysis
- Cost Benefit Analysis Examples
- Cost Volume Profit Analysis
- Opportunity Cost Formula
- Opportunity Cost Examples
- Mortgage APR vs Interest Rate
- Normal Distribution Formula
- Standard Normal Distribution Formula
- Normalization Formula
- Bell Curve
- T Distribution Formula
- Regression Formula
- Regression Analysis Formula
- Multiple Regression Formula
- Correlation Coefficient Formula
- Correlation Formula
- Population Variance Formula
- Covariance Formula
- Coefficient of Variation Formula
- Sample Standard Deviation Formula
- Relative Standard Deviation Formula
- Standard Deviation Formula
- Volatility Formula
- Binomial Distribution Formula
- Quartile Formula
- P Value Formula
- Skewness Formula
- R Squared Formula
- Adjusted R Squared
- Regression vs ANOVA
- Z Test Formula
- F-Test Formula
- Quantitative Research

Related Courses

**Formula of Regression Analysis (Table of Contents)**

## What is Regression Analysis Formula?

Regression is a statistical tool to predict the dependent variable with the help of one or more than one independent variables. While running a regression analysis, the main purpose of the researcher is to find out the relationship between the dependent variable and the independent variable. In order to predict the dependent variable one or multiple independent variables are chosen which can help in predicting the dependent variable. Regression analysis helps in the process of validating whether the predictor variables are good enough to help in predicting the dependent variable.

### Regression Analysis Formula

A regression formula tries to find the best fit line for the dependent variable with the help of the independent variables. The regression analysis equation is the same as the equation for a line which is

**y = mx + b**

Where,

- Y= the dependent variable of the regression equation
- M= slope of the regression equation
- x=dependent variable of the regression equation
- B= constant of the equation

### Explanation

While running a regression analysis, the main purpose of the researcher is to find out the relationship between the dependent variable and the independent variable. In order to predict the dependent variable one or multiple independent variables are chosen which can help in predicting the dependent variable. Regression analysis helps in the process of validating whether the predictor variables are good enough to help in predicting the dependent variable.

### Examples of Regression Analysis Formula (with Excel Template)

Let’s see some simple to advanced examples of Regression Analysis formula to understand it better.

#### Example #1

**Let us try and understand the concept of regression analysis with the help of an example. Let us try to find out what is the relation between the distance covered by the truck driver and the age of the truck driver. Someone actually does regression equation to validate whether what he thinks of the relationship between two variables, is also validated by the regression equation. **

Below is given data for calculation of regression analysis

For the calculation of Regression Analysis go to the data tab in excel and then select data analysis option. For further procedure of calculation refer to the given article here – Analysis ToolPak in Excel

4.9 (927 ratings)

The regression analysis formula for the above example will be

- y = mx + b
- y= 575.754*-3.121+0
**y= -1797**

In this particular example, we will see which variable is the dependent variable and which variable is the independent variable. The dependent variable in this regression equation is the distance covered by the truck driver and the independent variable is the age of the truck driver. The regression analysis for this set of dependent and independent variable proves that the independent variable is a good predictor of the dependent variable with a reasonably high coefficient of determination. The analyzing helps in validating that the factors in the form of the independent variable are selected correctly. The snapshot below depicts the regression output for the variables. The data set and the variables are presented in the excel sheet attached.

#### Example #2

**Let us try and understand regression analysis with the help of another example. Let us try to find out what is the relation between the height of the students of a class and the GPA grade of those students. Someone actually does regression equation to validate whether what he thinks of the relationship between two variables, is also validated by the regression equation.**

In this example, Below is given data for calculation of regression analysis in excel

Regression analysis calculation, go to the data tab in excel and then select data analysis option. For the further procedure of calculation refer to the given article here – Analysis ToolPak in Excel

The regression analysis formula for the above example will be

- y = mx + b
- y= 2.65*.0034+0
**y= 0.009198**

In this particular example, we will see which variable is the dependent variable and which variable is the independent variable. The dependent variable in this regression equation is the GPA of the students and the independent variable is the height of the students. The regression analysis for this set of dependent and independent variable proves that the independent variable is not a good predictor of the dependent variable as the value for the coefficient of determination is negligible. In this case, we need to find out another predictor variable in order to predict the dependent variable for the regression analysis. The snapshot below depicts the regression output for the variables. The data set and the variables are presented in the excel sheet attached.

### Relevance and Uses of Regression Analysis Formula

Regression is a very useful statistical method. For any business decision in order to validate a hypothesis that a particular action will lead to the increase in the profitability of a division can be validated based on the result of the regression between the dependant and independent variables. Regression analysis equation plays a very important role in the world of finance. A lot of forecasting is done using regression analysis. For example, the sales of a particular segment can be predicted in advance with the help of macroeconomic indicators that has a very good correlation with that segment. Both linear and multiple regressions are useful for practitioners in order to make predictions of the dependent variables and also validate the independent variables as a predictor of the dependent variables.

You can download this Regression Analysis Formula Excel Template from here – Regression Analysis Formula Excel Template

### Recommended Articles

This has been a guide to Regression Analysis Formula. Here we discuss how to perform Regression Analysis calculation using data analysis along with examples and downloadable excel template. You can learn more about statistical modeling from the following articles –

- What is the Coefficient of Determination?
- Definition of Gini Coefficient
- What is Adjusted R Squared?
- Regression vs ANOVA – Compare
- Regression Analysis Excel
- Formula of R Squared
- Formula of Forecast in Excel

- 35+ Courses
- 120+ Hours of Videos
- Full Lifetime Access
- Certificate of Completion

- Basic Microsoft Excel Training
- MS Excel 2010 Training Course: Advanced
- Microsoft Excel Basic Training
- Microsoft Excel 2013 – Advanced
- Microsoft Excel 2016 – Beginners
- Microsoft Excel 2016 – Advanced

## Leave a Reply