Financial Modeling Tutorials

- Excel Modeling
- Financial Functions in Excel
- Sensitivity Analysis in Excel
- Sensitivity Analysis
- Capital Budgeting Techniques
- Time Value of Money
- Future Value Formula
- Present Value Factor
- Perpetuity Formula
- Present Value vs Future Value
- Annuity vs Pension
- Present Value of an Annuity
- Doubling Time Formula
- Annuity Formula
- Present Value of an Annuity Formula
- Future Value of Annuity Due Formula
- Maturity Value
- Annuity vs Perpetuity
- Annuity vs Lump Sum
- Deferred Annuity Formula
- Internal Rate of Return (IRR)
- IRR Examples (Internal Rate of Return)
- NPV vs XNPV
- NPV vs IRR
- NPV Formula
- NPV Profile
- NPV Examples
- Advantages and Disadvantages of NPV
- Mutually Exclusive Projects
- PV vs NPV
- IRR vs ROI
- Break Even Point
- Break Even Analysis
- Breakeven Analysis Examples
- Break Even Chart
- Benefit Cost Ratio
- Payback Period & Discounted Payback Period
- Payback period Formula
- Discounted Payback Period Formula
- Payback Period Advantages and Disadvantages
- Profitability Index
- Feasibility Study Examples
- Cash Burn Rate
- Interest Formula
- Simple Interest
- Simple Interest vs Compound Interest
- Simple Interest Formula
- CAGR Formula (Compounded Annual Growth Rate)
- Growth Rate Formula
- Effective Interest Rate
- Loan Amortization Schedule
- Mortgage Formula
- Loan Principal Amount
- Interest Rate Formula
- Rate of Return Formula
- Effective Annual Rate
- Effective Annual Rate Formula (EAR)
- Compounding
- Compounding Formula
- Compound Interest
- Compound Interest Examples
- Daily Compound Interest
- Monthly Compound Interest Formula
- Discount Rate vs Interest Rate
- Discounting Formula
- Rule of 72
- Geometric Mean Return
- Geometric Mean vs Arithmetic Mean
- Real Rate of Return Formula
- Continuous compounding Formula
- Weighted average Formula
- Average Formula
- EWMA (Exponentially Weighted Moving Average)
- Average Rate of Return Formula
- Mean Formula
- Mean Examples
- Population Mean Formula
- Weighted Mean Formula
- Harmonic Mean Formula
- Median Formula in Statistics
- Range Formula
- Outlier Formula
- Decile Formula
- Midrange Formula
- Quartile Deviation
- Expected Value Formula
- Exponential Growth Formula
- Margin of Error Formula
- Decrease Percentage Formula
- Relative Change
- Percent Error Formula
- Holding Period Return Formula
- Cost Benefit Analysis
- Cost Benefit Analysis Examples
- Cost Volume Profit Analysis
- Opportunity Cost Formula
- Opportunity Cost Examples
- APR vs APY
- Mortgage APR vs Interest Rate
- Normal Distribution Formula
- Standard Normal Distribution Formula
- Normalization Formula
- Bell Curve
- T Distribution Formula
- Regression Formula
- Regression Analysis Formula
- Multiple Regression Formula
- Correlation Coefficient Formula
- Correlation Formula
- Correlation Examples
- Coefficient of Determination
- Population Variance Formula
- Covariance Formula
- Coefficient of Variation Formula
- Sample Standard Deviation Formula
- Relative Standard Deviation Formula
- Standard Deviation Formula
- Standard Deviation Examples
- Effect Size
- Sample Size Formula
- Volatility Formula
- Binomial Distribution Formula
- Multicollinearity
- Hypergeometric Distribution
- Exponential Distribution
- Central Limit Theorem
- Poisson Distribution
- Central Tendency
- Hypothesis Testing
- Gini Coefficient
- Quartile Formula
- P Value Formula
- Skewness Formula
- R Squared Formula
- Adjusted R Squared
- Regression vs ANOVA
- Z Test Formula
- Z Score Formula
- Z Test vs T Test
- F-Test Formula
- Quantitative Research
- Histogram Examples

Related Courses

**Hypergeometric Distribution (Table of Contents)**

## Hypergeometric Distribution Definition

The term “hypergeometric distribution” refers to the probability distribution of hypergeometric random variable which is primarily used to calculate probabilities when sampling without replacement. The formula for the probability of a hypergeometric distribution is derived using a number of items in the population, number of items in the sample, number of successes in the population, number of successes in the sample and few combinations. Mathematically, the probability is represented as,

**P =**

_{K }C_{k }*_{(N – K) }C_{(n – k) }/_{ N }C_{n}where,

- N = No. of items in the population
- n = No. of items in the sample
- K = No. of successes in the population
- k = No. of successes in the sample

The mean and standard deviation of a hypergeometric distribution is expressed as,

**Mean = n * K / N**

**Standard Deviation = [n * K * (N – K) * (N – n) / {N**

^{2}* (N – 1)}]^{1/2}### Explanation of the Hypergeometric Distribution Formula

The equation for hypergeometric distribution can be derived by using the following steps:

**Step 1:** Firstly, determine the total number of items in the population which is denoted by N. For example, the number of playing cards in a deck which is 52.

**Step 2:** Next, determine the number of items in the sample which is denoted by n. For example, the number of cards drawn from the deck.

**Step 3:** Next, determine the instances which will be considered to be successes in the population and it is denoted by K. For example, the number of hearts in the overall deck which is 13.

**Step 4:** Next, determine the instances which will be considered to be successes in the sample drawn and it is denoted by k. For example, the number of hearts in the cards drawn from the deck.

**Step 5:** Finally, the formula for probability of a hypergeometric distribution is derived using number of items in the population (step 1), number of items in the sample (step 2), number of successes in the population (step 3) and number of successes in the sample (step 4) as shown below.

4.9 (1,067 ratings)

**P = _{K }C _{k }* _{(N – K) }C _{(n – k) }/_{ N }C _{n}**

### Examples of Hypergeometric Distribution Formula (with Excel Template)

Let’s see some simple to advanced examples of hypergeometric distribution equation to understand it better.

#### Example #1

**Let us take the example of an ordinary deck of playing cards form where 6 cards are drawn randomly without replacement. Determine the probability of drawing exactly 4 red suites cards i.e., diamonds or hearts.**

**Given, N = 52 (since there are 52 cards in an ordinary playing deck)****n = 6 (Number of cards drawn randomly from the deck)****K = 26 (since there are 13 red cards each in diamonds and hearts suite)****k = 4 (Number of red cards to be considered successful in the sample drawn)**

**Solution:**

Therefore, the probability of drawing exactly 4 red suites cards in the drawn 6 cards can be calculated using the above formula as,

Probability = _{K }C _{k }* _{(N – K) }C _{(n – k) }/_{ N }C _{n}

= _{26 }C _{4 }* _{(52 – 26) }C _{(6 – 4) }/_{ 52 }C _{6}

= _{26 }C _{4 }* _{26 }C _{2 }/_{ 52 }C _{6}

= 14950 * 325 / 20358520

Probability will be –

**Probability = 0.2387 ~ 23.87%**

Therefore, there is a 23.87% probability of drawing exactly 4 red cards while drawing 6 random cards from an ordinary deck.

#### Example #2

**Let us take another example of a wallet that contains 5 $100 bills and 7 $1 bills. If 4 bills are chosen randomly, then determine the probability of choosing exactly 3 $100 bills.**

**Given, N = 12 (Number of $100 bills + Number of $1 bills)****n = 4 (Number of bills chosen randomly)****K = 5 (since there are 5 $100 bills)****k = 3 (Number of $100 bills to be considered success in the sample chosen)**

**Solution:**

Therefore, the probability of choosing exactly 3 $100 bills in the randomly chosen 4 bills can be calculated using the above formula as,

Probability = _{K }C _{k }* _{(N – K) }C _{(n – k) }/_{ N }C _{n}

= _{5 }C _{3 }* _{(12 – 5) }C _{(4 – 3) }/_{ 12 }C _{4}

= _{5 }C _{3 }* _{7 }C _{1 }/_{ 12 }C _{4}

= 10 * 7 / 495

Probability will be –

**Probability = 0.1414 ~ 14.14%**

Therefore, there is 14.14% probability of choosing exactly 3 $100 bills while drawing 4 random bills.

### Relevance and Uses

The concept of hypergeometric distribution is important because it provides an accurate way of determining the probabilities when the number of trials is not a very large number and that samples are taken from a finite population without replacement. In fact, the hypergeometric distribution is analogous to the binomial distribution which is used when the number of trials is substantially large. However, hypergeometric distribution is predominantly used for sampling without replacement.

### Recommended Articles

This has been a guide to Hypergeometric Distribution Formula. Here we discuss how to calculate the probability of hypergeometric distribution in excel with examples and downloadable excel template. You can learn more about excel modeling from the following articles-

- Poisson Distribution
- Examples of Bill of Sale with Sample Templates
- Formula of T Distribution
- Formula of Standard Normal Distribution
- Lognormal Distribution Excel
- Frequency Distribution Excel

- 250+ Courses
- 40+ Projects
- 1000+ Hours
- Full Lifetime Access
- Certificate of Completion