Financial Modeling Tutorials

- Excel Modeling
- Financial Functions in Excel
- Sensitivity Analysis in Excel
- Sensitivity Analysis
- Capital Budgeting Techniques
- Time Value of Money
- Future Value Formula
- Present Value Factor
- Perpetuity Formula
- Present Value vs Future Value
- Annuity vs Pension
- Present Value of an Annuity
- Doubling Time Formula
- Annuity Formula
- Present Value of an Annuity Formula
- Future Value of Annuity Due Formula
- Maturity Value
- Annuity vs Perpetuity
- Annuity vs Lump Sum
- Deferred Annuity Formula
- Internal Rate of Return (IRR)
- IRR Examples (Internal Rate of Return)
- NPV vs XNPV
- NPV vs IRR
- NPV Formula
- NPV Profile
- NPV Examples
- Advantages and Disadvantages of NPV
- Mutually Exclusive Projects
- PV vs NPV
- IRR vs ROI
- Break Even Point
- Break Even Analysis
- Breakeven Analysis Examples
- Break Even Chart
- Benefit Cost Ratio
- Payback Period & Discounted Payback Period
- Payback period Formula
- Discounted Payback Period Formula
- Payback Period Advantages and Disadvantages
- Profitability Index
- Feasibility Study Examples
- Cash Burn Rate
- Interest Formula
- Simple Interest
- Simple Interest vs Compound Interest
- Simple Interest Formula
- CAGR Formula (Compounded Annual Growth Rate)
- Growth Rate Formula
- Effective Interest Rate
- Loan Amortization Schedule
- Mortgage Formula
- Loan Principal Amount
- Interest Rate Formula
- Rate of Return Formula
- Effective Annual Rate
- Effective Annual Rate Formula (EAR)
- Compounding
- Compounding Formula
- Compound Interest
- Compound Interest Examples
- Daily Compound Interest
- Monthly Compound Interest Formula
- Discount Rate vs Interest Rate
- Discounting Formula
- Rule of 72
- Geometric Mean Return
- Geometric Mean vs Arithmetic Mean
- Real Rate of Return Formula
- Continuous compounding Formula
- Weighted average Formula
- Average Formula
- EWMA (Exponentially Weighted Moving Average)
- Average Rate of Return Formula
- Mean Formula
- Mean Examples
- Population Mean Formula
- Weighted Mean Formula
- Harmonic Mean Formula
- Median Formula in Statistics
- Range Formula
- Outlier Formula
- Decile Formula
- Midrange Formula
- Quartile Deviation
- Expected Value Formula
- Exponential Growth Formula
- Margin of Error Formula
- Decrease Percentage Formula
- Relative Change
- Percent Error Formula
- Holding Period Return Formula
- Cost Benefit Analysis
- Cost Benefit Analysis Examples
- Cost Volume Profit Analysis
- Opportunity Cost Formula
- Opportunity Cost Examples
- APR vs APY
- Mortgage APR vs Interest Rate
- Normal Distribution Formula
- Standard Normal Distribution Formula
- Normalization Formula
- Bell Curve
- T Distribution Formula
- Regression Formula
- Regression Analysis Formula
- Multiple Regression Formula
- Correlation Coefficient Formula
- Correlation Formula
- Correlation Examples
- Coefficient of Determination
- Population Variance Formula
- Covariance Formula
- Coefficient of Variation Formula
- Sample Standard Deviation Formula
- Relative Standard Deviation Formula
- Standard Deviation Formula
- Standard Deviation Examples
- Effect Size
- Sample Size Formula
- Volatility Formula
- Binomial Distribution Formula
- Multicollinearity
- Hypergeometric Distribution
- Exponential Distribution
- Central Limit Theorem
- Poisson Distribution
- Central Tendency
- Hypothesis Testing
- Gini Coefficient
- Quartile Formula
- P Value Formula
- Skewness Formula
- R Squared Formula
- Adjusted R Squared
- Regression vs ANOVA
- Z Test Formula
- Z Score Formula
- Z Test vs T Test
- F-Test Formula
- Quantitative Research
- Histogram Examples

Related Courses

**Poisson Distribution – Table of Contents**

## What is Poisson Distribution?

Poisson distribution is used in analyzing the variance against the average occurrence of that event in each time frame. It is used to find the probability of an event in a specific time of an event and used to determine the variance against the average number of occurrences.

Poisson Distribution Equation is given below:

**P (x; u) = (e**

^{-u}) * (u^{x}) / x!Where

- u = average number of occurrences during the time period
- P (x; u) = probability of x number of instances during the time period
- X= number of occurrences for which probability needs to be known

### Explanation of Poisson Distribution Formula

The formula for the calculation of the Poisson distribution is as follows-

P(x;u) = (e^-u).(u^x)/x!

Where

- u = average number of occurrences during the time period
- X= number of occurrences for which probability needs to be known
- P(x;u) = probability of x number of instances during the time period given u is an average number of occurrence
- e = Euler’s number which is base of the natural logarithm, approx. value of e is 2.72
- x! = It is known as x factorial. Factorial of a number is a product of that integer and all integer below. For eg. 4! = 4*3*2*1

### Examples of the Poisson Distribution Formula (with Excel Template)

Let’s see some simple to advanced examples of calculation of the Poisson distribution equation to understand it better.

#### Poisson Distribution Formula – Example #1

**Let us take a simple example of a Poisson distribution formula. The average occurrence of an event in a given time frame is 10. What would be the probability of that event occurrence for 15 times?**

In this example, u = average number of occurrences of event = 10

And x = 15

Therefore, the calculation of the Poisson distribution can be done as follows,

P (15;10) = e^(-10)*10^15/15!

**Poisson distribution will be-**

P (15;10) = 0.0347 = 3.47%

Hence, there is 3.47% probability of that event to occur for 15 times.

4.9 (1,067 ratings)

#### Poisson Distribution Formula – Example #2

Usage of the Poisson distribution equation can be visibly seen for improving productivity and operating efficiency of a firm. It can be used to find out whether it is financially viable to open a store 24 hours a day.

Let’s say Walmart in the U.S. is planning to open its store 24 hours a day. For finding out the viability of this option, at first Walmart management will find out the average number of sales between 12 midnight and 8 am. Now it will calculate its total operating cost for the working shift from 12 am to 8 pm. Based on this operating cost Walmart management knows that what is the minimum number of sales units to breakeven. Then with Poisson distribution formula, it will find out the probability of that sales number and see whether it is viable to open the store 24 hours a day or not.

For Example, let’s say the average cost of operating on a day is $10,000 from 12 am to 8 pm. Average sales would be $10,200 at that time. For breakeven, each day sales should be $10,000. Now we will find out the probability of $10,000 or lower sales on a day so that breakeven can be achieved

Therefore, the calculation of the Poisson distribution can be done as follows,

P(10,000,10200) = POISSON.DIST(10200,10000,TRUE)

**Poisson Distribution will be –**

P(10,000,10200) =97.7%

Hence there is 97.7% probability for $10,000 or lesser sell on a day. The same way there is a 50.3% probability for $10,200 or lesser dell on a day. That means between 10,000 and 10,200 sales probability is 47.4%. Hence there is a good chance for the firm to break even.

#### Poisson Distribution Formula – Example #3

Another use of the Poisson distribution formula is in Insurance Industry. A company which is in insurance business determines its premium amount based on the number of claims and amount claimed per year. So, to evaluate its premium amount, the insurance company will determine the average number of a claimed amount per year. Then based on that average, it will also determine the minimum and the maximum number of claims that can reasonably be filed in the year. Based on the maximum number of the claim amount and the cost and profit from the premium, the insurance firm will determine what kind if the premium amount will be good to break even its business.

Let’s say an average number of claims handled by an insurance company per day is 5. It will find out what is the probability of 10 claims per day.

Therefore, the calculation of the Poisson distribution can be done as follows,

P(10;5) = e^(-5). 5^10/10!

**Poisson Distribution will be –**

P(10;5) = 1.81%

Hence there is very little probability that the company will have to 10 claims per day and it can make its premium based on this data.

### Relevance and Uses

The Poisson distribution equation is very useful in finding out a number of events with a given time frame and known rate. Below are some of the uses of the formula:

- In the call center Industry to find out the probability of calls which will take more than usual time and based on that finding out the average waiting time for customers.
- To find out the maximum and a minimum number of sells in odd hours and find out whether it is viable to open a store at that time.
- To find out the probability of a number of road accidents in a time interval.
- To find out the probability of the maximum number of patients arriving at a time frame,
- A number of maximum and minimum and clicks on a website.
- To find out visitors’ footfalls in a mall, restaurant, etc.
- To find out the probability of maximum and a minimum number of an insurance claim in a year.

### Poisson Distribution Formula in Excel

It is very easy to find out Poisson distribution using excel. There is an excel function to find out the probability of an event. Below is the syntax of the function-

Where

- x= number of occurrences for which probability needs to be known
- Mean = average number of occurrences during the time period
- Cumulative= its value will be False if we need the exact occurrence of an event and True if a number of random events will be between 0 and that event.

We will take the same example 1 that we have taken above. Here x = 15, mean = 10 and we will have to find the probability of an exact number of events. So, the third argument will be false.

Hence P(15;10) = POISSON.DIST (15,10,FALSE) =0.0347 =3.47%

Here we got exact value using basic excel formula.

Let’s assume in the above example we need to find out the probability of occurrence between 0 to 15, then in the formula instead of false, we will use TRUE.

P(x<=15) = POISSON.DIST(15,10, TRUE) = 95.1%

That means the probability of occurrence of the event between 0 and 15 with 15 inclusive is 95.1%.

### Recommended Articles

This has been a guide to Poisson Distribution. Here we discuss how to calculate the Probability of X using Poisson distribution formula in excel with examples and downloadable excel template. You can learn more about financial modeling from the following articles –

- Poisson Distribution in Excel
- What is the Break-Even Chart?
- What is Break Even Analysis?
- Lognormal Excel Distribution
- Formula of T Distribution
- Formula of Binomial Distribution
- Formula of Standard Normal Distribution

- 250+ Courses
- 40+ Projects
- 1000+ Hours
- Full Lifetime Access
- Certificate of Completion