Financial Modeling Tutorials

- Excel Modeling
- Financial Functions in Excel
- Sensitivity Analysis in Excel
- Sensitivity Analysis
- Capital Budgeting Techniques
- Time Value of Money
- Future Value Formula
- Present Value Factor
- Perpetuity Formula
- Present Value vs Future Value
- Annuity vs Pension
- Present Value of an Annuity
- Doubling Time Formula
- Annuity Formula
- Present Value of an Annuity Formula
- Future Value of Annuity Due Formula
- Maturity Value
- Annuity vs Perpetuity
- Annuity vs Lump Sum
- Deferred Annuity Formula
- Internal Rate of Return (IRR)
- IRR Examples (Internal Rate of Return)
- NPV vs XNPV
- NPV vs IRR
- NPV Formula
- NPV Profile
- NPV Examples
- Advantages and Disadvantages of NPV
- Mutually Exclusive Projects
- PV vs NPV
- IRR vs ROI
- Break Even Point
- Break Even Analysis
- Breakeven Analysis Examples
- Break Even Chart
- Benefit Cost Ratio
- Payback Period & Discounted Payback Period
- Payback period Formula
- Discounted Payback Period Formula
- Payback Period Advantages and Disadvantages
- Profitability Index
- Feasibility Study Examples
- Cash Burn Rate
- Interest Formula
- Simple Interest
- Simple Interest vs Compound Interest
- Simple Interest Formula
- CAGR Formula (Compounded Annual Growth Rate)
- Growth Rate Formula
- Effective Interest Rate
- Loan Amortization Schedule
- Mortgage Formula
- Loan Principal Amount
- Interest Rate Formula
- Rate of Return Formula
- Effective Annual Rate
- Effective Annual Rate Formula (EAR)
- Compounding
- Compounding Formula
- Compound Interest
- Compound Interest Examples
- Daily Compound Interest
- Monthly Compound Interest Formula
- Discount Rate vs Interest Rate
- Discounting Formula
- Rule of 72
- Geometric Mean Return
- Geometric Mean vs Arithmetic Mean
- Real Rate of Return Formula
- Continuous compounding Formula
- Weighted average Formula
- Average Formula
- EWMA (Exponentially Weighted Moving Average)
- Average Rate of Return Formula
- Mean Formula
- Mean Examples
- Population Mean Formula
- Weighted Mean Formula
- Harmonic Mean Formula
- Median Formula in Statistics
- Range Formula
- Outlier Formula
- Decile Formula
- Midrange Formula
- Quartile Deviation
- Expected Value Formula
- Exponential Growth Formula
- Margin of Error Formula
- Decrease Percentage Formula
- Relative Change
- Percent Error Formula
- Holding Period Return Formula
- Cost Benefit Analysis
- Cost Benefit Analysis Examples
- Cost Volume Profit Analysis
- Opportunity Cost Formula
- Opportunity Cost Examples
- APR vs APY
- Mortgage APR vs Interest Rate
- Normal Distribution Formula
- Standard Normal Distribution Formula
- Normalization Formula
- Bell Curve
- T Distribution Formula
- Regression Formula
- Regression Analysis Formula
- Multiple Regression Formula
- Correlation Coefficient Formula
- Correlation Formula
- Correlation Examples
- Coefficient of Determination
- Population Variance Formula
- Covariance Formula
- Coefficient of Variation Formula
- Sample Standard Deviation Formula
- Relative Standard Deviation Formula
- Standard Deviation Formula
- Standard Deviation Examples
- Effect Size
- Sample Size Formula
- Volatility Formula
- Binomial Distribution Formula
- Multicollinearity
- Hypergeometric Distribution
- Exponential Distribution
- Central Limit Theorem
- Poisson Distribution
- Central Tendency
- Hypothesis Testing
- Gini Coefficient
- Quartile Formula
- P Value Formula
- Skewness Formula
- R Squared Formula
- Adjusted R Squared
- Regression vs ANOVA
- Z Test Formula
- Z Score Formula
- Z Test vs T Test
- F-Test Formula
- Quantitative Research
- Histogram Examples

Related Courses

**Exponential Distribution (Table of Contents)**

## What is Exponential Distribution?

In statistics and probability theory, the expression of exponential distribution refers to the probability distribution that is used to define the time between two successive events that occur independently and continuously at a constant average rate. The exponential distribution is one of the extensively used continuous distributions and it is strictly related to the Poisson distribution.

### Exponential Distribution Formula

A continuous random variable *x* (with scale parameter λ > 0) is said to have an exponential distribution only if its probability density function can be expressed by multiplying the scale parameter to the exponential function of minus scale parameter and *x* for all *x* greater than or equal to zero, otherwise the probability density function is equal to zero.

Mathematically, the probability density function is represented as,

such that mean is equal to 1/ λ and variance is equal to 1/ λ^{2}.

### Explanation of the Exponential Distribution Formula

The formula for exponential distribution is derived by using the following steps:

**Step 1:** Firstly, try to figure out whether the event under consideration is continuous and independent in nature and occurs at a roughly constant rate. Any practical event will ensure that the variable is greater than or equal to zero.

4.9 (1,067 ratings)

**Step 2:** Next, determine the value of the scale parameter, which is invariably the reciprocal of the mean.

**λ = 1 / mean**

**Step 3:** Next, multiply the scale parameter λ and the variable *x* and then calculate the exponential function of the product multiplied by minus one i.e. e^{– λ*x}.

**Step 4:** Finally, the probability density function is calculated by multiplying the exponential function and the scale parameter.

If the above formula holds true for all *x* greater than or equal to zero, then *x* is an exponential distribution.

### Example of Exponential Distribution

**Let us take the example of exponential distribution i.e x which is the amount of time taken (in minutes) by an office peon to deliver from the manager’s desk to the clerk’s desk. The function of time taken is assumed to have an exponential distribution with the average amount of time equal to five minutes.**

Given that *x* is a continuous random variable since time is measured.

Average, μ = 5 minutes

Therefore, scale parameter, λ = 1 / μ = 1 / 5 = 0.20

Hence, the exponential distribution probability function can be derived as,

**f(x) = 0.20 e ^{– 0.20*x}**

Now, calculate the exponential distribution probability function at different values of *x* to derive the distribution curve.

**For x = 0**

exponential distribution probability function for x=0 will be,

Similarly, calculate exponential distribution probability function for x=1 to x=30

- For x = 0, f(0) = 0.20 e
^{-0.20*0}= 0.200 - For x = 1, f(1) = 0.20 e
^{-0.20*1}= 0.164 - For x = 2, f(2) = 0.20 e
^{-0.20*2}= 0.134 - For x = 3, f(3) = 0.20 e
^{-0.20*3}= 0.110 - For x = 4, f(4) = 0.20 e
^{-0.20*4}= 0.090 - For x = 5, f(5) = 0.20 e
^{-0.20*5}= 0.074 - For x = 6, f(6) = 0.20 e
^{-0.20*6}= 0.060 - For x = 7, f(7) = 0.20 e
^{-0.20*7}= 0.049 - For x = 8, f(8) = 0.20 e
^{-0.20*8}= 0.040 - For x = 9, f(9) = 0.20 e
^{-0.20*9}= 0.033 - For x = 10, f(10) = 0.20 e
^{-0.20*10}= 0.027 - For x = 11, f(11) = 0.20 e
^{-0.20*11}= 0.022 - For x = 12, f(12) = 0.20 e
^{-0.20*12}= 0.018 - For x = 13, f(13) = 0.20 e
^{-0.20*13}= 0.015 - For x = 14, f(14) = 0.20 e
^{-0.20*14}= 0.012 - For x = 15, f(15) = 0.20 e
^{-0.20*15}= 0.010 - For x = 16, f(16) = 0.20 e
^{-0.20*16}= 0.008 - For x = 17, f(17) = 0.20 e
^{-0.20*17}= 0.007 - For x = 18, f(18) = 0.20 e
^{-0.20*18}= 0.005 - For x = 19, f(19) = 0.20 e
^{-0.20*19}= 0.004 - For x = 20, f(20) = 0.20 e
^{-0.20*20}= 0.004 - For x = 21, f(21) = 0.20 e
^{-0.20*21}= 0.003 - For x = 22, f(22) = 0.20 e
^{-0.20*22}= 0.002 - For x = 23, f(23) = 0.20 e
^{-0.20*23}= 0.002 - For x = 24, f(24) = 0.20 e
^{-0.20*24}= 0.002 - For x = 25, f(25) = 0.20 e
^{-0.20*25}= 0.001 - For x = 26, f(26) = 0.20 e
^{-0.20*26}= 0.001 - For x = 27, f(27) = 0.20 e
^{-0.20*27}= 0.001 - For x = 28, f(28) = 0.20 e
^{-0.20*28}= 0.001 - For x = 29, f(29) = 0.20 e
^{-0.20*29}= 0.001 - For x = 30, f(30) = 0.20 e
^{-0.20*30}= 0.000

We have derived distribution curve as follows,

### Relevance and Use

Although the assumption of a constant rate is very rarely satisfied in the real world scenarios, if the time interval is selected in such a way that the rate is roughly constant, then the exponential distribution can be used as a good approximate model. It has many other applications in the field of physics, hydrology, etc.

### Recommended Articles

This has been a guide to the Exponential Distribution. Here we discuss how to calculate exponential distribution using its formula along with an example and downloadable excel template. You can learn more about statistical modeling from the following articles –

- Formula of T Distribution
- Formula of Binomial Distribution
- Lognormal Excel Distribution
- Frequency Excel Distribution

- 250+ Courses
- 40+ Projects
- 1000+ Hours
- Full Lifetime Access
- Certificate of Completion