Financial Modeling Tutorials

- Excel Modeling
- Financial Functions in Excel
- Sensitivity Analysis in Excel
- Sensitivity Analysis
- Capital Budgeting Techniques
- Time Value of Money
- Future Value Formula
- Present Value Factor
- Perpetuity Formula
- Present Value vs Future Value
- Annuity vs Pension
- Present Value of an Annuity
- Doubling Time Formula
- Annuity Formula
- Present Value of an Annuity Formula
- Future Value of Annuity Due Formula
- Maturity Value
- Annuity vs Perpetuity
- Annuity vs Lump Sum
- Deferred Annuity Formula
- Internal Rate of Return (IRR)
- IRR Examples (Internal Rate of Return)
- NPV vs XNPV
- NPV vs IRR
- NPV Formula
- NPV Profile
- NPV Examples
- Advantages and Disadvantages of NPV
- Mutually Exclusive Projects
- PV vs NPV
- IRR vs ROI
- Break Even Point
- Break Even Analysis
- Breakeven Analysis Examples
- Break Even Chart
- Benefit Cost Ratio
- Payback Period & Discounted Payback Period
- Payback period Formula
- Discounted Payback Period Formula
- Payback Period Advantages and Disadvantages
- Profitability Index
- Feasibility Study Examples
- Cash Burn Rate
- Interest Formula
- Simple Interest
- Simple Interest vs Compound Interest
- Simple Interest Formula
- CAGR Formula (Compounded Annual Growth Rate)
- Growth Rate Formula
- Effective Interest Rate
- Loan Amortization Schedule
- Mortgage Formula
- Loan Principal Amount
- Interest Rate Formula
- Rate of Return Formula
- Effective Annual Rate
- Effective Annual Rate Formula (EAR)
- Compounding
- Compounding Formula
- Compound Interest
- Compound Interest Examples
- Daily Compound Interest
- Monthly Compound Interest Formula
- Discount Rate vs Interest Rate
- Discounting Formula
- Rule of 72
- Geometric Mean Return
- Geometric Mean vs Arithmetic Mean
- Real Rate of Return Formula
- Continuous compounding Formula
- Weighted average Formula
- Average Formula
- EWMA (Exponentially Weighted Moving Average)
- Average Rate of Return Formula
- Mean Formula
- Mean Examples
- Population Mean Formula
- Weighted Mean Formula
- Harmonic Mean Formula
- Median Formula in Statistics
- Range Formula
- Outlier Formula
- Decile Formula
- Midrange Formula
- Quartile Deviation
- Expected Value Formula
- Exponential Growth Formula
- Margin of Error Formula
- Decrease Percentage Formula
- Relative Change
- Percent Error Formula
- Holding Period Return Formula
- Cost Benefit Analysis
- Cost Benefit Analysis Examples
- Cost Volume Profit Analysis
- Opportunity Cost Formula
- Opportunity Cost Examples
- APR vs APY
- Mortgage APR vs Interest Rate
- Normal Distribution Formula
- Standard Normal Distribution Formula
- Normalization Formula
- Bell Curve
- T Distribution Formula
- Regression Formula
- Regression Analysis Formula
- Multiple Regression Formula
- Correlation Coefficient Formula
- Correlation Formula
- Correlation Examples
- Coefficient of Determination
- Population Variance Formula
- Covariance Formula
- Coefficient of Variation Formula
- Sample Standard Deviation Formula
- Relative Standard Deviation Formula
- Standard Deviation Formula
- Standard Deviation Examples
- Effect Size
- Sample Size Formula
- Volatility Formula
- Binomial Distribution Formula
- Multicollinearity
- Hypergeometric Distribution
- Exponential Distribution
- Central Limit Theorem
- Poisson Distribution
- Central Tendency
- Hypothesis Testing
- Gini Coefficient
- Quartile Formula
- P Value Formula
- Skewness Formula
- R Squared Formula
- Adjusted R Squared
- Regression vs ANOVA
- Z Test Formula
- Z Score Formula
- Z Test vs T Test
- F-Test Formula
- Quantitative Research
- Histogram Examples

Related Courses

**T Distribution Formula – (Table of Contents)**

## What is the T Distribution Formula?

The T distribution (which is also popularly known as Student’s T Distribution) is a kind of distribution which looks almost like the normal distribution curve or bell curve but with a bit fatter and shorter tail. When the sample size is small then this distribution will be used instead of the normal distribution.

The formula for T distribution is as per below

Where,

- x̄ is the sample mean
- μ is the population mean
- s is the standard deviation
- n is the size of the given sample

### Explanation of the T Distribution Formula

The calculation is quite simple but yes, the values are required. For example, one needs the population mean which is the universe means which is nothing but average of the population whereas sample mean is required to test the authenticity of the population mean whether the statement claimed on basis of population is indeed true and sample if any taken will represent the same statement. So, the formula here subtracts the sample mean from the population mean and then divides it by standard deviation and multiples by the square root of the sample size to standardize the value.

However, since there is no range for t distribution calculation the value can go weird and we won’t be able to calculate probability as student’s t distribution has limitations of arriving at a value and hence it is only useful for smaller sample size. Also to calculate probability after arriving at score one needs to find the value of that from student’s t distribution table.

### Examples of T Distribution Formula(with Excel Template)

Let’s see some simple to advanced examples of the T distribution formula to understand it better.

#### Example #1

**Consider the following variables are given to you:**

**Population mean = 310****Standard deviation = 50****Size of the sample = 16****Sample mean = 290**

**Calculate the t-distribution value.**

**Solution:**

Use the following data for the calculation of T distribution.

So, the calculation of T distribution^{ }can be done as follows-

Here all the values are given, we just need to incorporate the values.

We can use the formula

Value of t = (290 – 310) / (50 / √16)

**T Value = -1.60**

#### Example #2

**SRH company claims that its employees at analyst level earn an average of $500 per hour. A sample of 30 employees at analyst level is selected and their average earnings per hour were $450 with a sample deviation of $30 and assuming their claim to be true, calculate the t -distribution value which shall be used to find the probability for t – distribution.**

4.9 (1,067 ratings)

**Solution:**

Use the following data for the calculation of T distribution.

So, the calculation of T distribution^{ }can be done as follows-

Here all the values are given, we just need to incorporate the values.

We can use the formula

Value of t = (450 – 500) / (30 / √30)

**T Value = -9.13**

Hence the value for t score is -9.13

#### Example #3

**Universal college board had administered an IQ level test to 50 randomly selected professors. And the result they found from that was the average IQ level score was 120 with a variance of 121. Assume that the t score is 2.407. What is the population mean for this test which would justify t score value as 2.407?**

**Solution:**

Use the following data for the calculation of T distribution.

Here all the values are given along with t value, we need to calculate the population mean instead of t value this time.

Again, we would use the available data and will calculate the population means by inserting the values given in the formula below.

The sample mean is 120, the population means is unknown, sample standard deviation will be the square root of variance which would be 11 and the sample size is 50.

So, the calculation of population mean(μ) can be done as follows-

We can use the formula

Value of t = (120 – μ ) / (11 / √50)

2.407 = (120 – μ ) / (11 / √50)

-μ = -2.407 * (11/√50)-120

Population Mean (μ) will be –

μ = 116.26

Hence the value for the population mean will be 116.26

### Relevance and Use

The T Distribution (and those associated t scores values), is used in hypothesis testing when one needs to find out if one should reject or accept the null hypothesis.

In the above graph, the central region will be the acceptance area and the tail region will be the rejection region. In this graph which is a 2 tailed test, the blue shaded will be the rejection region. The area in the tail region can be described either with the t-scores or with the z-scores. Take an example, the image in the left will depict an area in the tails of five percent (which is 2.5% both the sides). The z-score should be 1.96 (taking the value from the z-table), which shall represent that 1.96 standard deviations from the average or the mean. The null hypothesis can be rejected if the value of the z score is less than the value of -1.96 or the value of the z score is greater than 1.96.

In general, this distribution shall be used as described earlier when one has a smaller sample size (mostly under 30) or if one doesn’t know what the population variance or the population standard deviation is. For practical purposes (that is in the real world), this would be majorly always the case. If the size of the sample which is provided is large enough, then the 2 distributions will be practically similar.

You can download this T Distribution Formula Excel Template from here – T Distribution Formula Excel Template

### Recommended Articles

This has been a guide to T Distribution Formula. Here we learn how to calculate T distribution value and population mean (μ) along with practical examples in excel and downloadable excel template. You can learn more about excel modeling from the following articles –

- How to use ISNULL Function in VBA?
- Sample Size Formula | Explanation
- Definition of Hypergeometric Distribution
- What is the Bell Curve?
- Lognormal Distribution
- Binomial Distribution
- Frequency Distribution
- Formula of Skewness

- 250+ Courses
- 40+ Projects
- 1000+ Hours
- Full Lifetime Access
- Certificate of Completion