## Bell Curve Meaning

A bell curve is a normal probability distribution of variables plotted on the graph and is like a bell shape where the highest or top point of the curve represents the most probable event out of all the series data. . It is also called the normal distribution, and the graph is in the shape of a bell.

You are free to use this image on your website, templates, etc, Please provide us with an attribution linkHow to Provide Attribution?Article Link to be Hyperlinked

For eg:

Source: Bell Curve (wallstreetmojo.com)

In this statistical process of data distribution, the chart represents the mean, median, and mode of the data set. It is used in a variety of fields, which include finance, economics, statistics, and social science. It helps analysts understand the distribution of information and make future forecasts based on observed patterns.

##### Table of contents

### How Does It Work?

A bell curve refers to a graph that depicts a normal probability distribution of a set of data. The curve is in the shape of a bell and is due to the standard deviation, which is the deviation from the mean of the dataset.

This kind of graphical representation shows a symmetrical bell shape displaying the mean, the median, and the mode. The data concentration on a **bell curve normal distribution** is more at the peak and it reduces on the sides. The peak is the point where the probability of occurrence is the highest. The peak also shows the mean value.

The dispersion on the curve is calculated using the standard deviation. There are some essential points to be noted regarding the relation between the standard deviation and the probability distribution. It is necessary to understand that about 68% of the overall data is within 1 standard deviation, around 95% of the overall data is within 2 standard deviations and around 99.7% of the overall data is within 3 standard deviations.

The above is also called the empirical rule and is an integral part of the calculation of the confidence interval in the probability distribution of statistical calculation. This concept is very widely used in the statistical field and has gained a lot of importance over the years.

In the financial world, the **bell curve normal distribution** curve has a lot of significance. Analysts and investors frequently use the normal probability distribution for return analysis and estimation of securities. This is useful in future predictions for investment. However, it is necessary to understand the type of security and its pricing trends and then use this method because the predictions using this method don’t always need to be accurate or suitable for all financial instruments.

###### Financial Modeling & Valuation Courses Bundle (25+ Hours Video Series)

**–>>** If you want to learn Financial Modeling & Valuation professionally , then do check this â€‹Financial Modeling & Valuation Course Bundleâ€‹ (**25+ hours of video tutorials with step by step McDonald’s Financial Model**). Unlock the art of financial modeling and valuation with a comprehensive course covering McDonaldâ€™s forecast methodologies, advanced valuation techniques, and financial statements.

### Formula

The formula for the bell curve is as per below:

You are free to use this image on your website, templates, etc, Please provide us with an attribution linkHow to Provide Attribution?Article Link to be Hyperlinked

For eg:

Source: Bell Curve (wallstreetmojo.com)

Where,

- Î¼ is mean
- Ïƒ is a standard deviation
- Ï€ is 3.14159
- e is 2.71828

- The meanMeanMean refers to the mathematical average calculated for two or more values. There are primarily two ways: arithmetic mean, where all the numbers are added and divided by their weight, and in geometric mean, we multiply the numbers together, take the Nth root and subtract it with one.read more denotes Î¼, which denotes the distribution’s center or midpoint.
- The horizontal symmetry about the vertical line is x = Î¼ as there is a square in the exponent.
- The standard deviation denotes by Ïƒ and is related to the spread of the distribution. As Ïƒ increases, the normal distribution will spread out more. Specifically, the distribution’s peak is not as high, and the distribution’s tail shall become thicker.
- Ï€ is constant pi and has an infinite, not repeating decimal expansion.
- E represents another constant and is also transcendental and irrational, like pi.
- The exponent has a non-positive sign, and the rest of the terms are squared. So it means the exponent will always be negative. And because of that, the function increases for all x < mean Î¼. The opposite is true when all x > mean Î¼.
- Another horizontal asymptote corresponds to the horizontal line y, which equals 0, meaning that the function’s graph will never touch the x-axis and will have a zero.
- The square root in the excelSquare Root In The ExcelThe Square Root function is an arithmetic function built into Excel that is used to determine the square root of a given number. To use this function, type the term =SQRT and hit the tab key, which will bring up the SQRT function. Moreover,Â this function accepts a single argument.read more term will normalize the formula, which means that when one integrates the function for searching the area under the curve where the whole area will be under the curve, it is one, corresponding to 100%.
- This formula is related to a normal distribution used for calculating probabilities.

### Graph

Let us look at the graph of the **bell curve shape** statistical concept, its shape, and specific pattern in detail from the figure below:

You are free to use this image on your website, templates, etc, Please provide us with an attribution linkHow to Provide Attribution?Article Link to be Hyperlinked

For eg:

Source: Bell Curve (wallstreetmojo.com)

As we can see from the picture, it is symmetric in shape, which means that the right side of the curve mirrors the image of the left side. The peak of the graph shows the concentration of the mean of the data. The width of the graph determines the standard deviation. The lower part of the **bell curve shape** indicates more standard deviation. Hence the variability or width is more, which reduces as the curve goes up. This bell shaped graph is being widely used in different fields of statistical study.

### Examples

Let us understand the concept of **bell curve graph** with the help of some suitable examples.

#### Example# 1

Consider the mean given to you, like 950, the standard deviation of 200. Then, it would help if you calculated y for x = 850 using the bell curve equation.

**Solution:**

Use the following data for the calculation.

First, we have all the values, i.e., mean as 950, standard deviation as 200, and x as 850. Then, we need to plug in the figures in the formula and calculate the y.

The formula for bell-shaped curve as per below:

y = 1/(200âˆš2*3.14159)^e^{-(850 â€“ 950)/2*(200^2)}

y will be –

**y = 0.0041**

After doing the above math (check the Excel template), we have the value of y as 0.0041.

#### Example# 2

Sunita is a runner preparing for the upcoming Olympics and wants to determine that the race she will run has perfect timing calculations as a split delay can cause her the gold in Olympics. Her brother is a statistician, and he noted that the mean timing of her sister is 10.33 seconds, whereas the standard deviation of her timing is 0.57 seconds, which is quite risky as such a split delay can cause her to win gold in the Olympics. So, using the bell-shaped curve equation, what is the probability of Sunita completing the race in 10.22 seconds?

** Solution:**

Use the following data for the calculation.

First, we have all the values, i.e., mean as 10.33 seconds, standard deviation as 0.57 seconds, and x as 10.22. Then, we just need to plug in the figures in the formula and calculate the y.

The formula for the bell curve is as per below:

y = 1/(0.57âˆš2*3.14159)^e^{-(850 â€“ 950)/2*(200^2)}

y will be –

**y = 0.7045**

After doing the above math (check the Excel template), we have the value of y as 0.7045.

#### Example# 3

Hari-baktii Ltd. is an audit firm. It has recently received a statutory audit from ABC bank. They have noted that in the last few audits, they picked up an incorrect sample that misrepresented the population. For example, the sample they picked up depicted that they were genuine in the case of receivables. Still, later they discovered that the receivable population had many dummy entries.

So now, they are trying to analyze the probability of picking up the bad sample, which would generalize the population as correct even though the sample was not a correct representation of that population. They have an article assistant who is good at statisticsStatisticsStatistics is the science behind identifying, collecting, organizing and summarizing, analyzing, interpreting, and finally, presenting such data, either qualitative or quantitative, which helps make better and effective decisions with relevance.read more, and recently he has learned about the bell curve equation.

So, he decides to use that formula to find the probability of picking up at least seven incorrect samples. He went into the firm’s history and found that the average incorrect sample they collect from a population is between 5 to 10, and the standard deviation is 2.

**Solution:**

Use the following data for the calculation.

First, we need to take the average of the two numbers given, i.e., for mean as (5+10)/2, which is 7.50, standard deviation as 2, and x as 7. Then, we just need to plug in the figures in the formula and calculate the y.

The formula for the bell curve is as per below:

y = 1/(2âˆš2*3.14159)^e^{-(7 â€“ 7.5)/2*(2^2)}

y will be –

**y = 0.2096**

After doing the above math (check the Excel template), we have the value of y as 0.2096.

So, there is a 21% chance that they could also take 7 incorrect samples in the audit this time.

### Disadvantages

Let us look at the disadvantages of the concept of **bell curve graph** in detail, as given below:

- It assumes that the distribution is normal, and the data pattern is symmetrical in nature, creating the bell. This is not always the case in the real world.
- There may be extreme outliers or values that deviate a lot from the mean. In such cases, this distribution may not be very suitable and may not display the distribution accurately.
- In case of complicated systems of complex data sets that have the influence of many factors, dependence on normal distribution and
**bell curve distribution**may lead to biasness. - From the above points it can be derived that it has the limitation of using only certain types of data sets from analysis, making its predictive power limited. It will not be able to capture extreme occurrences.
- Forcibly using the bell curve to represent data for which it is not a good fit will actually misrepresent the data, leading to inaccurate predictions and forcasting.

It is necessary to keep the above disadvantages in mind before selecting this method so that it can be applied in suitable areas of analysis to get the desired results.

### Relevance And Uses

One will use this function to describe the physical events, i.e., the number of events is humongous. In simple words, one may not be able to predict the outcome of the item if there are a ton of observations, but one shall be able to predict what those shall do as a whole. For example, suppose one has a gas jar at a constant temperature. Then, the normal distribution or the bell curve will enable that person to figure out the probability of one particle moving at a specific velocity.

The financial analyst will often use the normal probability distributionProbability DistributionProbability distribution could be defined as the table or equations showing respective probabilities of different possible outcomes of a defined event or scenario. In simple words, its calculation shows the possible outcome of an event with the relative possibility of occurrence or non-occurrence as required.read more or the bell curve while analyzing the returns of overall market sensitivity or security.

E.g., stocks that display a bell curve are usually the blue-chip ones, and those shall have the lower volatility and often more behavioral patterns which shall be predictable. Hence, they use the normal probability distribution or bell curve of a stock’s previous returns to make assumptions about the expected returnsExpected ReturnsThe Expected Return formula is determined by applying all the Investments portfolio weights with their respective returns and doing the total of results. Expected return = (p1 * r1) + (p2 * r2) + â€¦â€¦â€¦â€¦ + (pn * rn), where, pi = Probability of each return and ri = Rate of return with probability. read more.

### Bell Curve Vs Gaussian

Both the above terms are actually used interchangeably since they depict the same statistical pattern of data distribution. However, there some very small differences between them, which are as given below:

- The
**bell curve distribution**is a more of a general terminology that describes any symmetrical concept in statistics that is in the shape of a bell, whereas in case of the latter, the shape of the curve is the same but it is a normal distribution with a more mathematical basis. - The former does not necessarily specify any mathematical origin, but the latter does.
- The latter was named after the mathematician Carl Friedrich Gauss, which is not the case for the former.

Thus, apart from the above minor differences, it can be said that both the concepts are almost the same.

### Recommended Articles

This article is a guide to Bell Curve and its definition. Here we learn how to create a bell-shaped graph (y) using its formula, practical examples, and a downloadable Excel template. You can learn more about financial analysis from the following articles: –

- Laffer Curve
- Formula of Binomial DistributionFormula Of Binomial DistributionThe Binomial Distribution Formula calculates the probability of achieving a specific number of successes in a given number of trials. nCx represents the number of successes, while (1-p) n-x represents the number of trials.read more
- ExamplesExamplesThe standard deviation examples will guide you in applying the standard deviation formula for figuring out the risk associated with the volatility of the financial securities.read more of Standard Deviation
- Normal DistributionNormal DistributionNormal Distribution is a bell-shaped frequency distribution curve which helps describe all the possible values a random variable can take within a given range with most of the distribution area is in the middle and few are in the tails, at the extremes. This distribution has two key parameters: the mean (Âµ) and the standard deviation (Ïƒ) which plays a key role in assets return calculation and in risk management strategy.read more

## Leave a Reply