FLASH SALE! - "FINANCIAL MODELING COURSE BUNDLE AT 60% OFF" Enroll Now

# Principal Payment

Updated on July 1, 2024
Article byWallstreetmojo Team
Edited byAaron Crowe
Reviewed byDheeraj Vaidya, CFA, FRM

## What is the Principal Payment?

The principal payment is that component of repayment that reduces the amount due to debt outstanding. In finance, a loan, when owed, requires payments to be made via equated installments, which has two components- interest payment (reducing the interest portion due on loan) and principal payment (directly reducing the loan amount due). When a loan is taken, the lender and the borrower mutually decide on the installments that would be made by the borrower at decided intervals. These installments also account for interest or the opportunity cost that the lender forgoes when making the loan.

### Types of Principal Payment

There are generally two types of repayment schedules – even principal payments and even total payments.

For eg:
Source: Principal Payment (wallstreetmojo.com)

#### #1 – Even Principal Payments

In even principal payments, the amount of principal payment is the same for each payment. It is simply computed using the amount of loan originally taken divided by the number of installments. The interest component on such type is the interest charged for the period on the amount outstanding.

#### #2 – Even Total Payments

In even total payments, the amount of repayment stays the same during the period; however, the interest component decrease while the principal payment size increases. It is important to note that the installment stays the same.

The annual equated repayments, the following formula shall be used:

Equated Installments = P * r *(1+r)n / [(1+r)n – 1]

Where,

• P =Principal Amount Due
• r = Rate of Interest for Period
• n = Number of Installments

–>> If you want to learn Financial Modeling & Valuation professionally , then do check this ​Financial Modeling & Valuation Course Bundle​ (25+ hours of video tutorials with step by step McDonald’s Financial Model). Unlock the art of financial modeling and valuation with a comprehensive course covering McDonald’s forecast methodologies, advanced valuation techniques, and financial statements.

### Principal Payment Examples & Calculation

Let’s take an example and understand. Mr. John wants a loan of \$100,000 to expand his business and goes to Bank ABC LLC. The Bank decides to lend him the money @2.0% per annum with a tenure of 5 years over which he will repay the loan in 5 installments. Mr. John, depending on the terms of the loan, could make repayments wither by even principal payments or even total payments.

You can download this Principal Payment Excel Template here – Principal Payment Excel Template

The amortization table in each such case is given below.

Loan Amortization- Even Principal Payments

The principal payments calculation stays the same, while the interest component changes are based on the amount outstanding.

• Where the payments are based on ‘Even Total Payments,’ we would first need to find equated installments for which we would plug in necessary inputs in the formula above. In the given case P=\$100,000 with r =2.0% and n=5.
• When we plug in the inputs in the equation, we get \$21,215.8, which is the payment to be made at the end of each year for 5 years. It is important to note here that this payment also includes the interest component, and eventually, what you repay over 5 years would be more than the principal was originally has taken, which is \$100,000.
• The table below shows how the amount of outstanding amortizes during the life of the loan. The repayment stays the same during the period with the interest component, reducing with repayment of the principal as per the schedule.

Loan Amortization – Even Total Payments

Principal Component = Repayment – (Starting Amount * r)

If, at the end of year 2, John decides to repay an extra \$20,000 along with the equated payment of \$21,215.8, this extra payment will directly reduce the amount outstanding to \$41,184.0, and the loan amortization schedule will change.

Loan Amortization – Even Total Payments

• In the scenario above, John has been able to repay his loan a year earlier (given he sticks with the same amount of equated payments each year) and has actually saved on interest. In the original case, the interest amount paid during the life of the loan amount was \$6,079.2, while in the scenario stated above, the interest amount paid during the life of the loan is \$4,855.2, which is lower by \$1,244.0
• John provided the loan agreement gives him an option, can also continue the loan for 5 years by restructuring the equated installments at the end of year 2 on principal payment of \$20,000.
• The bank would compute the equated installments again for a period of 3 years now on the amount outstanding, which is \$41,184.0. The amortization table for this case is given below;

Loan Amortization – Even Total Payments

• Early payment saves interest for the period.
• Reduced debt increases the free cash available to equity shareholders of the company or, in the case of an individual, free cash for himself in the form of saved interest.
• In the case of a company, it leads to a healthy balance sheet on account of reduced debt levels.
• Ideal for cash-rich companies with no further projects to invest in